

Shiseido Wins First Prize at the 14th China Cosmetics Academic Research Conference for Innovative Technology that Converts Ultraviolet Light into Light to bring about Beneficial Effects on the Skin

- 3 other papers also win second prizes -

Shiseido Company, Limited ("Shiseido") won the first (1 paper) and second (3 papers) prizes at the 14th China Cosmetics Academic Research Conference hosted by the China Association of Fragrance Flavour and Cosmetic Industries (CAFFCI) held between February 28 and March 1, 2023 in Taian City, Shandong Province, China^{*1}. To date, Shiseido has received a total of eight first prizes at the conference, an award given to the most outstanding research. Going forward, Shiseido will continue to provide new customer value through a variety of products and services including our global brands *SHISEIDO* and *Clé de Peau Beauté* by utilizing the outcomes of our cutting-edge research and advanced technologies.

*¹ A total of 98 papers were submitted to this conference, and a total of 1 first prize, 9 second prizes, and 14 third prizes were awarded after rigorous review by researchers belonging to research institutes such as universities, corporate executives, and prominent industry experts.

China Innovation Center researcher receiving the first prize at the award ceremony (on behalf of Senior Chief Researcher Kazuyuki Miyazawa)

China Association of Fragrance Flavour and Cosmetic Industries, CAFFCI

CAFFCI is a nonprofit organization consisting of business entities, institutions, and individuals specializing in activities for cosmetics manufacturing such as essence/fragrance and cosmetics ingredients, as well as equipment/devices, packaging, related R&D activities, design, education, and others. The China Cosmetics Academic Research Conference is held once every two years and is regarded as one of the largest conferences on cosmetics in terms of the number of research presentations and academic debates involved. The participants include many companies, universities, and research institutes in China and overseas, and the best research papers are selected based on outstanding results that will contribute to advancing technologies in the Chinese cosmetics industry.

Overview of prize-winning research papers

[First Prize]

Title	Biomimetic Skincare System Using Sunlight Energy
Presenter	Shiseido MIRAI Technology Institute, Senior Chief Researcher Kazuyuki Miyazawa
Overview	Inspired by the mechanism of photosynthesis in plants, which
	converts sunlight into energy, we have succeeded in developing
	a new technology that not only protects the skin from UV rays
	which damages the skin, but also converts UV rays into visible
	light that has a positive effect on the skin. With this technology, it
	becomes possible to draw out the natural beauty of the skin in
	harmonious coexistence with the environment. After searching for
	active ingredients, we found that the light converted from UV rays
	by fluorescent zinc oxide activates the epidermal cells and dermal fibroblasts damaged
	by UV rays. In addition, we confirmed that such light suppresses inflammatory factors
	that trigger the production of enzymes that decompose skin-rejuvenating collagen, and
	it reduces erythema (skin redness caused by sunburn) leading to photoaging.

[Second Prize]

Title	Next generation wearable skin -A Topical Formulation for Face Shaping-
Presenter	Shiseido MIRAI Technology Institute, Chief Researcher Tomoko Sekine
Overview	We have developed a formulation that directly corrects the shape
	of undereye bags, which greatly affects the overall impression of
	the face. By applying a formulation containing reactive polymers
	to the skin and layering a formulation containing an ingredient
	promoting cross-linking reaction on top, the polymers cross-link
	to form a film as an invisible new layer of artificial skin and the
	tension created by the polymer network shrinkage suppresses
	the puffiness of the undereye bags. While the shrinkage of the
	film has a corrective effect on the undereye bags, it also causes peeling. Thus, we
	designed a formulation by which the inner surface of the film in contact with the skin
	provides soft yet strong adhesion while the outer surface of the film, which is not in
	contact with the skin, increases its contraction, to create a film with internal and external
	structures of different properties. With this technology, we have succeeded in balancing
	peeling resistance and excellent corrective effect on the undereye bags.

[Second Prize]

Title	Novel Approach to Anti-Aging Skin Care
	-Great discovery that the combination of complex extracts and multiple energy is the
	most effective way to improve sagging skin-
Presenter	Shiseido MIRAI Technology Institute, Researcher Minami Yamada
Overview	We have revealed that complex physical stimulation including
	high and low frequencies increases the expression of integrin $\alpha 6$,
	a cell adhesion factor playing an important role in stabilizing
	dermal stem cells as well as that of dermal matrix components,
	Collagen type V and fibrillin 1. In addition, through our cell
	experiments, we confirmed that the combined use of complex
	physical stimuli and complex extracts increased the expression of
	collagen, elastin, and hyaluronic acid-related genes, while our
	human studies showed that the combined use improved skin elasticity, tightening the
	skin around the eyes and face lines. These effects are greater than those of when using
	complex extracts alone, indicating that the combination of complex physical stimulation
	and complex extracts may make a significant contribution to improving skin sagging and
	elasticity.

[Second Prize]

Title	Novel discovery of photo-aging related gene through out from re-analysis of public
	database
Presenter	Shiseido MIRAI Technology Institute, Researcher Taiki Tsutsui (as of the paper
	submission date)
Overview	By analyzing big data that combines our independently acquired gen e expression data
	and DNA methylation* ² information data in external public databases, we have
	elucidated the mechanism by which the skin epigenetically*3 causes dullness. As a
	result, we found that the TIPARP gene is methylated and acquired to regulate by
	photoaging and thus hinders the normal transmission of information to prevent dull skin.
	We also revealed that an extract derived from deep-sea microorganisms promotes the
	expression of the TIPARP gene and has the effect of suppressing skin dullness.
	* ² One of epigenetic gene control systems. By being methylated, genetic information is locked and unable to be read
	properly.
	* ³ An acquired genetics phenomenon of altered gene expression that does not involve changes in DNA sequence.

Related press releases

Shiseido Wins First, Second and Third Prizes at 13th China Cosmetics Academic Research Conference (2020)

https://corp.shiseido.com/en/news/detail.html?n=0000000002957

Shiseido Wins First Prize and Two Second Prizes for Excellent Research Papers at the 12th China Cosmetics Academic Research Conference (2018)

https://corp.shiseido.com/en/news/detail.html?n=0000000002478